Answer:
8.65%
Explanation:
this question is solved taking two steps, lets first calculate the individual expected return per stock based on the probabilities of growing economy:
[tex]E(r)=P_{boom}*R_{boom}+P_{normal}*R_{normal}+P_{recession}*R_{recession}[/tex]
here E(r) represents the expected return of any stock based on the probability of boom, normal and recession in economy, and the return for each one of those states, so applying to this data we have:
Stock A
[tex]E(r)=20\%*18\%+70\%*11\%+10\%*10\%[/tex]
[tex]E(r)=12.3\%[/tex]
Stock B
[tex]E(r)=20\%*9\%+70\%*7\%+10\%*4\%[/tex]
[tex]E(r)=7.1\%[/tex]
Stock C
[tex]E(r)=20\%*6\%+70\%*9\%+10\%*13\%[/tex]
[tex]E(r)=8.3\%[/tex]
now we have to agregate for total portfolio the return, and this can be done using the next formula:
[tex]E(r)_{p}= E(r)_{A}*w_{A}+E(r)_{B}*w_{B} +E(r)_{C}*w_{C}[/tex]
where E(r) (A) for example represents the expected return of A stock and w(A) is the weight of A stock in total portafolio, so we have:
[tex]E(r)_{p}= 12.3\%*20\%+7.1\%*50\%+8.8\%*30\%[/tex]
[tex]E(r)_{p}= 8.65\%[/tex]