Answer:
E=[tex]k*\frac{q}{21}*u[/tex]
[tex]u=\frac{1}{\sqrt{21}} *(-1,-2,-4)m[/tex]
[tex]u_{y}=\frac{-2}{\sqrt{21}} m[/tex]
Explanation:
q: particle's charge
k: coulomb constant
E=E*u
r=r*u
r=distancia vectorial entre P y S
r=distancia escalar entre P y S
E: Electric field vector
E: magnitud of magnetic field vector
u: unit vector radial
then:
[tex]E=k*q/r^{2}[/tex]
r=r*u
r=P-S=(-1,-2,-4)m
[tex]r^{2}=(Magnitude(P-S))^2=(-1)^2+(-2)^2+(-4)^2=21[/tex]
[tex]r=\sqrt{21}[/tex]
E=[tex]k*\frac{q}{21}*u[/tex]
u=r/r=[tex]\frac{1}{\sqrt{21}} *(-1,-2,-4)m[/tex]
[tex]u_{y}=\frac{-2}{\sqrt{21}} m[/tex]