Respuesta :
Answer:
[tex]-r_{A}=k\times[BF_3]^{1}\times[NH_3]^{1}[/tex]
Explanation:
The rate law of a chemical reaction is given by
[tex]-r_{A}=k\times[BF_3]^{\alpha}\times[NH_3]^{\beta}[/tex]
This law can be written for any experiment, and making the quotient between those expressions the reaction orders can be found
Between experiments 1 and 2
[tex]\frac{-r_{A1}}{{-r}_{A2}}=\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)^\beta[/tex]
Then the expression for the calculation of [tex]\beta[/tex]
[tex]\beta=\frac{ln\frac{-r_{A1}}{-r_{A2}}}{ln\left(\frac{\left[NH_3\right]_1}{\left[NH_3\right]_2}\right)}=\frac{ln\frac{0.2130}{0.1065}}{ln\left(\frac{0.250}{0.125}\right)}[/tex]
Resolving
[tex]\beta=1[/tex]
Doing the same between experiments 3 and 4 the expression for [tex]\alpha[/tex] is
[tex]\alpha=\frac{ln\frac{-r_{A3}}{-r_{A4}}}{ln\left(\frac{\left[BF_3\right]_3}{\left[BF_3\right]_4}\right)}=\frac{ln\frac{0.0682}{0.1193}}{ln\left(\frac{0.200}{0.350}\right)}[/tex]
Resolving
[tex]\alpha=1[/tex]
This means that the rate law for this reaction is
[tex]-r_{A}=k\times[BF_3]^{1}\times[NH_3]^{1}[/tex]