Answer:
The factors are : [tex](4x+5)(4x+5)[/tex]
Step-by-step explanation:
The given expression is :
[tex]16x^{2} +40x+25[/tex]
Re writing the equation :
[tex]4^{2}x^{2} +40x+5^{2}[/tex]
Applying the rule [tex]a^{x} b^{x} =(ab)^{x}[/tex]
[tex](4x)^{2} +40x+5^{2}[/tex]
Re write 40x as 2.4x.5
[tex](4x)^{2} + 2*4x*5+5^{2}[/tex]
Applying perfect square formula:
[tex](a+b)^{2}=a^{2} +2ab+b^{2}[/tex]
where a = 4x and b = 5
So, the factors become : [tex](4x+5)^{2}[/tex]
or [tex](4x+5)(4x+5)[/tex]