Respuesta :

the correct question is

What values of b satisfy 3(2b+3)^2 = 36


we have

[tex] 3(2b+3)^2 = 36 [/tex]

Divide both sides by [tex] 3 [/tex]

[tex] (2b+3)^2 = 12 [/tex]

take the square root of both sides

[tex] ( 2b+3)} =(+ /-) \sqrt{12} \\ 2b=(+ /-) \sqrt{12}-3 [/tex]


[tex] b1=\frac{\sqrt{12}}{2} -\frac{3}{2} [/tex]

[tex] b1=\sqrt{3} -\frac{3}{2} [/tex]


[tex] b2=\frac{-\sqrt{12}}{2} -\frac{3}{2} [/tex]

[tex] b2=-\sqrt{3} -\frac{3}{2} [/tex]

therefore


the answer is

the values of b are

[tex] b1=\sqrt{3} -\frac{3}{2} [/tex]

[tex] b2=-\sqrt{3} -\frac{3}{2} [/tex]


Answer:

A

Step-by-step explanation:

The answer is A and I should know because I just took the test and got 100%