Respuesta :
the correct question is
What values of b satisfy 3(2b+3)^2 = 36
we have
[tex] 3(2b+3)^2 = 36 [/tex]
Divide both sides by [tex] 3 [/tex]
[tex] (2b+3)^2 = 12 [/tex]
take the square root of both sides
[tex] ( 2b+3)} =(+ /-) \sqrt{12} \\ 2b=(+ /-) \sqrt{12}-3 [/tex]
[tex] b1=\frac{\sqrt{12}}{2} -\frac{3}{2} [/tex]
[tex] b1=\sqrt{3} -\frac{3}{2} [/tex]
[tex] b2=\frac{-\sqrt{12}}{2} -\frac{3}{2} [/tex]
[tex] b2=-\sqrt{3} -\frac{3}{2} [/tex]
therefore
the answer is
the values of b are
[tex] b1=\sqrt{3} -\frac{3}{2} [/tex]
[tex] b2=-\sqrt{3} -\frac{3}{2} [/tex]
Answer:
A
Step-by-step explanation:
The answer is A and I should know because I just took the test and got 100%