Find parametric equations for the tangent line to the curve of intersection of the paraboloid z = x2 + y2 and the ellipsoid 3x2 + 2y2 + 4z2 = 21 at the point (−1, 1, 2). (Enter your answer as a comma-separated list of equations. Let x, y, and z be in terms of t.)

Respuesta :

Answer:

[tex]x=-1-18 t,y=1+19 t,z=2-2 t[/tex]

Step-by-step explanation:

We are given that

Equation of paraboloid

[tex]z=x^2+y^2[/tex]

[tex]z-x^2-y^2=0[/tex]

And equation of the ellipsoid

[tex]3x^2+2y^2+4z^2-21=0[/tex]

We have to find the parametric equation for tangent line to the curve of the intersection of the paraboloid and ellipsoid at point (-1,1,2).

We have to find the normal at point (-1,1,2)

[tex]N_1=-2x\hat{i}-2y\hat{j}+\hat{k}[/tex]

Normal at point (-1,1,2)

[tex]N_1=<2,-2,1>[/tex]

[tex]N_2=6x\hat{i}+4y\hat{j}+8z\hat{k}[/tex]

Normal at point (-1,1,2)

[tex]N_2=<-6,4,16>[/tex]

We rescale and set [tex]N_2=<-3,2,8>[/tex]

The tangent vector to the curve of intersection is given by

[tex]N_1\time N_2[/tex]=[tex]\begin{vmatrix}\hat{i}&\hat{j}&\hat{k}\\2&-2&1\\-3&2&8\end{vmatrix}[/tex]

[tex]N_1\times N_2=<-18,19,-2>[/tex]

Hence, the tangent line is given by

[tex]x=-1-18 t,y=1+19 t,z=2-2 t[/tex]