An unstable particle at rest breaks up into two fragments of unequal mass. The mass of the lighter fragment is equal to 2.90 ✕ 10−28 kg and that of the heavier fragment is 1.62 ✕ 10−27 kg. If the lighter fragment has a speed of 0.893c after the breakup, what is the speed of the heavier fragment?

Respuesta :

Answer:

The speed of the heavier fragment is 0.335c.

Explanation:

Given that,

Mass of the lighter fragment [tex]M_{l}=2.90\times10^{-28}\ kg[/tex]

Mass of the heavier fragment [tex]M_{h}=1.62\times10^{-27}\ Kg[/tex]

Speed of lighter fragment = 0.893c

We need to calculate the speed of the heavier fragment

Let v is the speed of the second fragment after decay

Using conservation of relativistic momentum

[tex]0=\drac{m_{1}v_{1}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}-\drac{m_{2}v_{2}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}[/tex]

[tex]\drac{m_{1}v_{1}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}=\drac{m_{2}v_{2}}{\sqrt{1-\dfrac{v_{1}^2}{c^2}}}[/tex]

[tex]\dfrac{2.90\times10^{-28}\times0.893c}{\sqrt{1-(0.893)^2}}=\dfrac{1.62\times10^{-27}v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}[/tex]

[tex]\dfrac{v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}=\dfrac{2.90\times10^{-28}\times0.893c}{1.62\times10^{-27}\times0.45}[/tex]

[tex]\dfrac{v_{2}}{\sqrt{1-\dfrac{v_{2}^2}{c^2}}}=0.355c[/tex]

[tex]\dfrac{v_{2}}{1-\dfrac{v_{2}^{2}}{c^2}}=(0.355c)^2[/tex]

[tex]\dfrac{1-\dfrac{v_{2}^2}{c^2}}{v_{2}^2}=\dfrac{1}{(0.355c)}[/tex]

[tex]\dfrac{1}{v_{2}^2}-\dfrac{1}{c^2}=\dfrac{1}{(0.355c)^2}[/tex]

[tex]\dfrac{1}{v_{2}^2}=\dfrac{1}{c^2}+\dfrac{1}{0.126c^2}[/tex]

[tex]\dfrac{1}{v_{2}^2}=\dfrac{1}{c^2}(1+\dfrac{1}{0.126})[/tex]

[tex]\dfrac{1}{v_{2}^2}=\dfrac{8.93}{c^2}[/tex]

[tex]v_{2}^2=\dfrac{c^2}{8.93}[/tex]

[tex]v_{2}=0.335c[/tex]

Hence, The speed of the heavier fragment is 0.335c.