Butane is a common fuel used in cigarette lighters and camping stoves. Normally supplied in metal containers under pressure, the fuel exists as a mixture of liquid and gas, so high temperatures may cause the container to explode. At 25.0°C, the vapor pressure of butane is 2.30 atm. What is the pressure in the container at 142.0°C? (ΔH° vap = 24.3 kJ/mol.)

Respuesta :

Answer:

36.43 atm is the pressure in the container at 142.0°C.

Explanation:

The Clausius Clapeyron equation:

[tex]\ln \frac{P_1}{P_2}=\frac{\Delta H_{vap}}{R}\times (\frac{1}{T_2}-\frac{1}{T_1})[/tex]

[tex]P_1[/tex] = Pressure at temperature [tex]T_1[/tex]

[tex]P_2[/tex] = Pressure at temperature [tex]T_2[/tex]

[tex]\Delta H_{vap][/tex] = Enthalpy of vaporization of substance

R = Universal gas constant = 8.314 J/ mol K

[tex]P_1=2.30 atm,T_1=25^oC=298.15 K[/tex]

[tex]P_2=?,T_2=142^oC=415.15 K[/tex]

[tex]\Delta H_{vap]= 24.3 kJ/mol=24300 J/mol[/tex]

[tex]\ln \frac{2.30 atm}{P_2}=\frac{24300 J/mol}{8.314 J/mol K}\times (\frac{1}{415.15 K}-\frac{1}{298.15 K})[/tex]

[tex]P_2=36.43 atm[/tex]

36.43 atm is the pressure in the container at 142.0°C.