An AC voltage of the form Dv 5 (90.0 V) sin (350t) is applied to a series RLC circuit. If R 5 50.0 V, C 5 25.0 mF, and L 5 0.200 H, find the (a) impedance of the circuit, (b) rms current in the circuit, and (c) average power delivered to the circuit

Respuesta :

Answer:

a) Z = 85.9 ohms

b) 0.74 A

c) 37.1 W

Explanation:

Given : 90 sin (350 t )

Angular frequency = ω = 350 rad/s

C = 25 mF = 25 x 10⁻³ F

Inductance = L = 0.20 H

a) Inductive reactance = X(L) = ω L = (350)(0.2) = 70 ohms

Capacitive reactance = X(C) = 1 / ωC = 0.114 ohms

Reactance = Z = [tex]\sqrt{R^{2}+ (X_{L}- X_{C})^{2}}[/tex]

                         = [tex]\sqrt{50^{2}+ ( 70 - 0.114)^{2}}[/tex]

                          = 85.9 ohms

b)  current = I = 90 / 85.9 = 1.048 A

[tex]I_{rms}=[/tex] = 1.048 / [tex]\sqrt{2}[/tex] = 0.74 A

c) P = [tex]I_{rms}^{2}[/tex] R = (0.74)(50) = 37.1 W