Fine grains of beach sand are assumed to be spheres of radius 64.8 µm. These grains are made of silicon dioxide which has a density of 2600 kg/m3 . What is the mass of each grain of sand? Answer in units of kg. 013 (part 2 of 2) 1.0 points Consider a cube whose sides are 0.514 m long. How many kg of sand would it take for the total surface area of all the grains of sand to equal the surface area of the cube? Answer in units of kg.

Respuesta :

Answer:

1) Mass of the grain is [tex]2.9632\times 10^{-9} kg[/tex].

2) 0.08901 kg of sand would have surface area equal the surface area of the cube.

Explanation:

1) Radius of the grain,r = 64.8 µm =[tex]6.48\times 10^{-5}m [/tex]

Volume of the sphere =[tex]\frac{4}{3}\pi r^3[/tex]

Volume of the grain of a sand:

[tex]V=\frac{4}{3}\times \pi r^3=\frac{4}{3}\times 3.14\times (6.48\times 10^{-5} m)^3[/tex]

[tex]V=1.1397\times 10^{-12} m^3[/tex]

Density of a grain of sand = [tex]d=2600 kg/m^3[/tex]

Mass of a grain of a sand = M

[tex]d=2600 kg/m^3=\frac{M}{1.1397\times 10^{-12} m^3}[/tex]

[tex]M=2.9632\times 10^{-9} kg[/tex]

Mass of the grain is [tex]2.9632\times 10^{-9} kg[/tex].

2) Surface are of sphere: [tex]4\pi r^2[/tex]

Surface area of a grain:

[tex]A=4\times 3.14\times (6.48\times 10^{-5}m)^2[/tex]

[tex]A=5.2766\times 10^{-8} m^2[/tex]

Length of the cube = a = 0.514 m

Total surface area of cube ,A'= [tex]6a^2[/tex]

[tex]A'=6\times (0.514 m)^2=1.5851 m^2[/tex]

let the number grains with area equal to total surface area of cube be x.

[tex]A'=A\times x[/tex]

[tex]x=\frac{1.5851 m^2}{5.2766\times 10^{-8} m^2}=3.003\times 10^7 [/tex]

Volume of x number of grains :V'

[tex]V'=V\times x[/tex]

[tex]V= 1.1397\times 10^{-12} m^3\times 3.003\times 10^7[/tex]

[tex]V'=3.4236\times 10^{-5} m^3[/tex]

Mass of [tex]3.4236\times 10^{-5} m^3[/tex] of sandL:

=[tex]3.4236\times 10^{-5} m^3\times 2600 kg/m^3=0.08901 kg[/tex]

0.08901 kg of sand would have surface area equal the surface area of the cube.