contestada

A tablet of a common over-the-counter drug contains 2.00 x 102 mg of caffeine (C8H10N4O2; molar mass = 194.0 g/mol). What is the pH of the solution resulting from the dissolution of two of these tablets in 225. mL of water at 25oC? (For caffeine, Kb = 4.1 x 10-4.)2.766.337.6710.9611.24

Respuesta :

Answer:

pH of the solution is 11.24

Explanation:

Total mass of caffeine in 225 mL solution upon dissolution of two tablets = [tex](2\times 2.00\times 10^{2})mg=(2\times 2.00\times 10^{2}\times 10^{-3})g=0.4g[/tex]

So molarity of caffeine in solution = [tex]\frac{0.4\times 1000}{225\times 194}M=0.00916M[/tex]

We have to construct an ice table to calculate change in concentration at equilibrium

[tex]C_{8}H_{10}N_{4}O_{2}+H_{2}O\rightleftharpoons HC_{8}H_{10}N_{4}O_{2}^{+}+OH^{-}[/tex]

I:0.00916                      0                  0

C:-x                                +x                 +x

E:0.00916-x                   x                  x

So, [tex]\frac{[HC_{8}H_{10}N_{4}O_{2}^{+}][OH^{-}]}{[C_{8}H_{10}N_{4}O_{2}]}=K_{b}[/tex]

Species inside third bracket represent equilibrium concentrations

So,[tex]\frac{x^{2}}{0.00916-x}=0.00041[/tex]

or, [tex]x^{2}+0.00041x-(3.76\times 10^{-6})=0[/tex]

Hence [tex]x=\frac{-0.00041+\sqrt{(0.00041)^{2}+(4\times 3.76\times 10^{-6})}}{2}[/tex]

So, [tex]x=0.001745[/tex]M

So, [tex]pH=14-pOH=14+log[OH^{-}]=14+logx=14+log(0.001745)=11.24[/tex]