Answer:
9.25
Explanation:
∵ The coordinates of midpoint of a line segment having end points [tex](x_1,y_1)[/tex] and [tex](x_2,y_2)[/tex] are,
[tex](\frac{x_1+x_2}{2},\frac{y_1+y_2}{2})[/tex]
Given,
The coordinates of A are (-6, 13),
Coordinates of D are (2, 14),
If C is the midpoint of line segment AD,
Then the coordinates of C are,
[tex](\frac{-6+2}{2}, \frac{13+14}{2})[/tex]
[tex]=(\frac{-4}{2},\frac{27}{2})[/tex]
[tex]=(-2, 13.5)[/tex]
Now, if B is the mid point of line segment AC,
Then the coordinates of B are,
[tex](\frac{-6-2}{2},\frac{13+13.5}{2})[/tex]
[tex]=(\frac{-8}{2}, \frac{26.5}{2})[/tex]
[tex]=(-4, 13.25)[/tex]
Hence, the sum of the coordinates of B = -4 + 13.25 = 9.25