Choose the option that best answers the question.The points A(0, 0), B(0, 4a – 5) and C(2a + 1, 2a + 6) form a triangle. If Angle ABC = 90, what is the area of triangle ABC? 102 120 132 144 156

Respuesta :

Answer:

The correct option is 1.

Step-by-step explanation:

Given information: The coordinates of a right angled triangle ABC are A(0, 0), B(0, 4a – 5) and C(2a + 1, 2a + 6). Angle ABC = 90°.

It means AB and BC are legs of the right angled triangle ABC.

Side AB lies on the y-axis because the x-coordinate of both A and B is 0.

Two legs are perpendicular to each other. So, BC must be parallel to x-axis and the y-coordinate of both B and C is must be same.

[tex]4a-5=2a+6[/tex]

[tex]4a-2a=5+6[/tex]

[tex]2a=11[/tex]

Divide both sides by 2.

[tex]a=\frac{11}{2}[/tex]

The value of a is 2. So the coordinates of triangle ABC are

[tex]B(0,4a-5)=B(0,4(\frac{11}{2})-5)\Rightarrow B(0,17)[/tex]

[tex]C(2a+1,2a+6)=C(2(\frac{11}{2})+1,2(\frac{11}{2})+6)\Rightarrow C(12,17)[/tex]

The area of a triangle is

[tex]Area=\frac{1}{2}|x_1(y_2-y_3)+x_2(y_3-y_1)+x_3(y_1-y_2)|[/tex]

The area of triangle ABC is

[tex]Area=\frac{1}{2}|0(17-17)+0(17-0)+12(0-17)|[/tex]

[tex]Area=\frac{1}{2}|12(-17)|[/tex]

[tex]Area=\frac{1}{2}|-204|[/tex]

[tex]Area=\frac{1}{2}(204)[/tex]

[tex]Area=102[/tex]

The area of triangle ABC is 102. Therefore the correct option is 1.