Respuesta :
Answer : The percent yield for this experiment is, 72.82 %
Explanation :
First we have to calculate the mass of bromine.
[tex]\text{Mass of bromine}=\text{Density of bromine}\times \text{Volume of bromine}[/tex]
[tex]\text{Mass of bromine}=3.10g/ml\times 20.0ml=62g[/tex]
The mass of bromine = 62 g
Now we have to calculate the moles of bromine.
[tex]\text{Moles of }Br_2=\frac{\text{Mass of }Br_2}{\text{Molar mass of }Br_2}=\frac{62g}{159.8g/mole}=0.388mole[/tex]
Now we have to calculate the moles of [tex]C_6H_5COOH[/tex].
The balanced chemical reaction is,
[tex]2Al(s)+3Br_2(l)\rightarrow 2AlBr_3(s)[/tex]
From the balanced reaction, we conclude that
As, 3 moles of [tex]Br_2[/tex] react to give 2 moles of [tex]AlBr_3[/tex]
So, 0.388 moles of [tex]Br_2[/tex] react to give [tex]\frac{2}{3}\times 0.388=0.259[/tex] moles of [tex]AlBr_3[/tex]
Now we have to calculate the mass of [tex]AlBr_3[/tex]
[tex]\text{Mass of }AlBr_3=\text{Moles of }AlBr_3\times \text{Molar mass of }AlBr_3[/tex]
[tex]\text{Mass of }AlBr_3=(0.259mole)\times (266.69g/mole)=69.07g[/tex]
The theoretical yield of [tex]AlBr_3[/tex] = 69.07 g
The actual yield of [tex]AlBr_3[/tex] = 50.3 g
Now we have to calculate the percent yield of [tex]AlBr_3[/tex]
[tex]\%\text{ yield of }AlBr_3=\frac{\text{Actual yield of }AlBr_3}{\text{Theoretical yield of }AlBr_3}\times 100=\frac{50.3g}{69.07g}\times 100=72.82\%[/tex]
Therefore, the percent yield for this experiment is, 72.82 %