Respuesta :
Explanation:
It is given that,
Mass of copper, m = 207 g
Specific heat of copper, [tex]c=0.385\ Jg^oC[/tex]
Heat absorbed, [tex]Q=5\ kJ=5000\ J[/tex]
Initial temperature, [tex]T_i=80.4^oC[/tex]
Let [tex]T_f[/tex] is the final temperature of copper. Heat absorbed is given by :
[tex]Q=mc(T_f-T_i)[/tex]
[tex]T_f=\dfrac{Q}{mc}+T_i[/tex]
[tex]T_f=\dfrac{5000}{207\times 0.385}+80.4[/tex]
[tex]T_f=143.13^oC[/tex]
So, the final temperature of the copper is 143.13 degree Celsius. Hence, this is the required solution.
Answer:
The answer to your question is: T2 = 133.1°C
Explanation:
Data
mass = 207 g
Cp = 0.385J/g°C
Q = 5 kJ = 5000 J
T1 = 80.4 °C
T2 = ?
Formula
Q = mCp(T2 - T1)
(T2 - T1) = Q / mCp
T2 = T1 + Q/mCp
Substitution
T2 = 80.4 + 5000/(207)(0.385)
T2 = 80.4 + 5000 / 79.7
T2 = 80.4 + 52.7
T2 = 133.1°C