What will be the final temperature of a 207.0 g piece of copper (specific heat = 0.385Jg∘C) that absorbs 5.00 kJ of heat starting at 80.4∘C? Report your answer with the correct number of significant figures.

Respuesta :

Explanation:

It is given that,

Mass of copper, m = 207 g

Specific heat of copper, [tex]c=0.385\ Jg^oC[/tex]

Heat absorbed, [tex]Q=5\ kJ=5000\ J[/tex]

Initial temperature, [tex]T_i=80.4^oC[/tex]

Let [tex]T_f[/tex] is the final temperature of copper. Heat absorbed is given by :

[tex]Q=mc(T_f-T_i)[/tex]

[tex]T_f=\dfrac{Q}{mc}+T_i[/tex]

[tex]T_f=\dfrac{5000}{207\times 0.385}+80.4[/tex]

[tex]T_f=143.13^oC[/tex]

So, the final temperature of the copper is 143.13 degree Celsius. Hence, this is the required solution.

Answer:

The answer to your question is:  T2 = 133.1°C

Explanation:

Data

mass = 207 g

Cp = 0.385J/g°C

Q = 5 kJ = 5000 J

T1 = 80.4 °C

T2 = ?

Formula

                  Q = mCp(T2 - T1)

                  (T2 - T1) = Q / mCp

                  T2 = T1 + Q/mCp

Substitution

                  T2 = 80.4 + 5000/(207)(0.385)

                  T2 = 80.4 + 5000 / 79.7

                  T2 = 80.4 + 52.7

                  T2 = 133.1°C