Respuesta :

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$7000\\ r=rate\to 12\%\to \frac{12}{100}\dotfill &0.12\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{semianually, thus twice} \end{array}\dotfill &2\\ t=years\dotfill &22 \end{cases} \\\\\\ A=7000\left(1+\frac{0.12}{2}\right)^{2\cdot 22}\implies A=7000(1.06)^{44}\implies A\approx 90898.3734[/tex]

Answer:

$25,480

Step-by-step explanation:

12 must first be a decimal (12/100) which is 0.12

multiply 0.12 to 7000 and 22 to get 18,480

add 18,480 to 7000 to get $25,480

12/100=0.12

0.12*7000*22=18,480

18,480+7000=25,480