Use technology and the given confidence level and sample data to find the confidence interval for the population mean mu. Assume that the population does not exhibit a normal distribution. Weight lost on a diet:
99 % confidence
n equals 41
x overbar equals 4.0 kg
s equals 6.1 kg

Respuesta :

Answer: (1.55, 6.45)

Step-by-step explanation:

The confidence interval for population mean is given by :-

[tex]\overline\ {x}\pm\ z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex]

Given : Significance level : [tex]\alpha: 1-0.99=0.01[/tex]

Critical value : [tex]z_{\alpha/2}=2.576[/tex]

Sample size : n=41

Sample mean : [tex]\overline{x}=4.0\text{ kg}[/tex]

Standard deviation : [tex]\sigma=6.1\text{ kg}[/tex]

Then, 99% confidence interval for population mean will be :_

[tex]4\pm\ (2.576)\dfrac{6.1}{\sqrt{41}}\\\\\approx4\pm2.45\\\\=(4-2.45, 4+2.45)=(1.55, 6.45)[/tex]