Respuesta :
Answer:
[tex]\boxed{\text{(a) 14 L; (b) 711 kg}}[/tex]
Explanation:
(a) Litres of water
[tex]\text{Mass of F}^{-} = 8.5 \times 10^{7}\text{ gal} \times \dfrac{\text{0.2 mg F}^{-}}{\text{1 kg}} = \textbf{14 mg F}^{-}\\\\\text{Volume of water} = \text{14 mg F}^{-} \times \dfrac{\text{1 L water}}{\text{1 mg F}^{-}} = \textbf{14 L water}\\\\\text{The person would have to consume $\boxed{\textbf{14 L}}$ of water per day}[/tex]
(b) Mass of NaF
[tex]\text{Volume} =8.5 \times 10^{7} \text{gal} \times \dfrac{\text{3.785 L}}{\text{1 gal}} = 3.22 \times 10^{8}\text{ L}\\\\\text{Milligrams of F}^{-} = 3.22 \times 10^{8}\text{ L} \times \dfrac{\text{ 1 mg F}^{-}}{\text{1 L}} = 3.22 \times 10^{8}\text{ mg F}^{-}\\\\\text{kilograms of F}^{-} = 3.22 \times 10^{8}\text{ mg F}^{-} \times \dfrac{\text{1 mg F}^{-}}{10^{6}\text{kg F⁻}} = \text{322 kg F}^{-}[/tex]
1 kmol of NaF (41.99 kg) contains 19.00 kg of F⁻.
[tex]\text{Kilograms of NaF}= \text{322 kg F}^{-} \times \dfrac{\text{41.99 kg NaF}}{\text{19.00 kg F}^{-}} = \text{711 kg NaF}\\\\\text{It will take } \boxed{\textbf{711 kg}} \text{ of NaF to treat the reservoir}[/tex]
Explanation:
(a) The given data is as follows.
Concentration = 1 mg/L, Toxic amount = 0.2 g
Now, we will calculate the volume of fluoridated drinking water as follows.
[tex]V_{(water, toxic)} = \frac{\text{toxic amount}}{\text{concentration}}[/tex]
= [tex]\frac{0.2 g}{10^{-3} g/L}[/tex]
= 200 L
Hence, there will be 200 liters of fluoridated drinking water would a 70-kg person have to consume in one day to reach this toxic level.
(b) Now, it is also given that
V = [tex]850 \times 10^{7} gal[/tex]
We will convert gallons into liters as follows.
[tex]850 \times 10^{7} gal \times 3785 L/gal[/tex]
= [tex]32183 \times 10^{8} L[/tex]
Concentration = 1 mg/L
Therefore, we will calculate the mass as follows.
m = [tex]\text{volume \times concentration}[/tex][tex]\text{volume} \times \text{concentration}[/tex]
= [tex]32183 \times 10^{8} \times 1 mg/L[/tex]
= [tex]32183 \times 10^{2} kg[/tex] (As 1 mg = [tex]10^{-6}[/tex] kg)
Thus, we can conclude that there are [tex]32183 \times 10^{2} kg[/tex] of sodium fluoride would be needed to treat a [tex]8.5 \times 10^{7} gal[/tex] reservoir.