Respuesta :

Answer:

72a^3b^2

Step-by-step explanation:

The LCM is the number divisible by both numbers, multiples of 24 are 24,48,72 etc 36 is 36,72,108 etc the least I'd 72. with exponents it's the highest exponent because a^3 is a*a*a

Answer: Last Option

[tex]72a^3b^2[/tex]

Step-by-step explanation:

We look for the LCM between [tex]24a^3 b[/tex] and [tex]36ab ^2[/tex]

First find the prime factors of 24 and 36

24 | 2

12 | 2

6 | 2

3 | 3

1

[tex]24=2^3*3[/tex]

36 | 2

18 | 2

9 | 3

3 | 3

1

[tex]36=2^2 * 3^2[/tex]

Then we have:

[tex]2^3*3a^3b[/tex]  and [tex]2^2 * 3^2ab^2[/tex]

Now we choose the common and uncommon factors raised to the greatest exponent

[tex]LCM(2^3*3a^3b,\ 2^2 *3^2ab^2)=2^3(3^2)a^3b^2\\\\LCM(2^3*3a^3b,\ 2^2 * 3^2ab^2) =72a^3b^2[/tex]