Answer:
The likelihood is 0.9826.
Step-by-step explanation:
Here mean amount or μ = 350
Standard deviation = 45
Sample size n = 40
Let X be the sample mean where X>335
P(X>335)=[tex]P(z>\frac{335-350}{45/\sqrt{40} } )[/tex]
[tex]P(z>\frac{-15}{7.12})[/tex]
[tex]P(z>-2.11)[/tex]
[tex]P(z<2.11)[/tex]
=>[tex]0.5+P(0<z<2.11)[/tex]
=> [tex]0.5+0.4826=0.9826[/tex]
Hence, the likelihood is 0.9826.