Perform the following conversions:
(a) 68°F (a pleasant spring day) to °C and K.
(b) =164°C (the boiling point of methane, the main component of natural gas) to K and °F
(c) 0K (absolute zero, theoretically the coldest possible temperature) to °C and °F.

Respuesta :

Answer:

a) [tex]20^0C[/tex] and [tex]293K[/tex]

b) [tex]437K[/tex] and [tex]327.2^0F[/tex]

c) [tex]-273^0C[/tex] and [tex]459.44^0F[/tex]

Explanation:

Temperature of the gas is defined as the degree of hotness or coldness of a body. It is expressed in units like [tex]^0C[/tex] , [tex]^0F[/tex]and [tex]K[/tex]  

These units of temperature are inter convertible.

[tex]t^0C=(t+273)K[/tex]

[tex]t^oC=\frac{5}{9}\times (t^oF-32)[/tex]

[tex]K-273=\frac{5}{9}\times (^oF-32)[/tex]

a)  68°F (a pleasant spring day) to °C and K.

Converting this unit of temperature into [tex]^0C[/tex] and [tex]K[/tex] by using conversion factor:

[tex]t^oC=\frac{5}{9}\times (68^oF-32)[/tex]

[tex]t=20^0C[/tex]

[tex]20^0C=(20+273)K=293K[/tex]

b) 164°C (the boiling point of methane, the main component of natural gas) to K and °F

Conversion from degree Celsius to Kelvins  and Fahrenheit

[tex]164C=\frac{5}{9}\times (t^oF-32)[/tex]

[tex]t^0F=327.2[/tex]

[tex]164°C=(164+273)K=437 K[/tex]

c) 0K (absolute zero, theoretically the coldest possible temperature) to °C and °F.

[tex]K-273=\frac{5}{9}\times (t^oF-32)[/tex]

[tex]0-273=\frac{5}{9}\times (t^oF-32)[/tex]

[tex]t=-459.4^0F[/tex]

[tex]t^K=(0-273)^0C=-273^0C[/tex]