Answer:
a) [tex]20^0C[/tex] and [tex]293K[/tex]
b) [tex]437K[/tex] and [tex]327.2^0F[/tex]
c) [tex]-273^0C[/tex] and [tex]459.44^0F[/tex]
Explanation:
Temperature of the gas is defined as the degree of hotness or coldness of a body. It is expressed in units like [tex]^0C[/tex] , [tex]^0F[/tex]and [tex]K[/tex]
These units of temperature are inter convertible.
[tex]t^0C=(t+273)K[/tex]
[tex]t^oC=\frac{5}{9}\times (t^oF-32)[/tex]
[tex]K-273=\frac{5}{9}\times (^oF-32)[/tex]
a) 68°F (a pleasant spring day) to °C and K.
Converting this unit of temperature into [tex]^0C[/tex] and [tex]K[/tex] by using conversion factor:
[tex]t^oC=\frac{5}{9}\times (68^oF-32)[/tex]
[tex]t=20^0C[/tex]
[tex]20^0C=(20+273)K=293K[/tex]
b) 164°C (the boiling point of methane, the main component of natural gas) to K and °F
Conversion from degree Celsius to Kelvins and Fahrenheit
[tex]164C=\frac{5}{9}\times (t^oF-32)[/tex]
[tex]t^0F=327.2[/tex]
[tex]164°C=(164+273)K=437 K[/tex]
c) 0K (absolute zero, theoretically the coldest possible temperature) to °C and °F.
[tex]K-273=\frac{5}{9}\times (t^oF-32)[/tex]
[tex]0-273=\frac{5}{9}\times (t^oF-32)[/tex]
[tex]t=-459.4^0F[/tex]
[tex]t^K=(0-273)^0C=-273^0C[/tex]