Respuesta :
Answer:
The rate of consumption of [tex]NH_{3}[/tex] is 2.0 mol/L.s
Explanation:
Applying law of mass action to this reaction-
[tex]-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [N_{2}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}[/tex]
where [tex]-\frac{\Delta [NH_{3}]}{\Delta t}[/tex] represents rate of consumption of [tex]NH_{3}[/tex], [tex]-\frac{\Delta [O_{2}]}{\Delta t}[/tex] represents rate of consumption of [tex]O_{2}[/tex], [tex]\frac{\Delta [N_{2}]}{\Delta t}[/tex] represents rate of formation of [tex]N_{2}[/tex] and [tex]\frac{\Delta [H_{2}O]}{\Delta t}[/tex] represents rate of formation of [tex]H_{2}O[/tex].
Here rate of formation of [tex]H_{2}O[/tex] is 3.0 mol/(L.s)
From the above equation we can write-
[tex]-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}[/tex]
Here [tex]\frac{\Delta [H_{2}O]}{\Delta t}=3.0 mol/(L.s))[/tex]
So, [tex]-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\frac{\Delta [H_{2}O]}{\Delta t}[/tex]
Hence, [tex]-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\times 3.0 mol/(L.s)=2.0 mol/(L.s)[/tex]