Respuesta :

Answer:

See explanations

Step-by-step explanation:

1. Rational numbers are subset of the real numbers.

The given number [tex]-\frac{5}{3}[/tex] belongs to the set of rational numbers and real numbers.

2. First simplify [tex]\sqrt{49}[/tex] to obtain [tex]\sqrt{7^2}=7[/tex].

The natural numbers are subsets of whole numbers, integers and real numbers.

Therefore  [tex]\sqrt{49}=7[/tex] belongs to the set of natural numbers [tex]\mathbb N[/tex],whole numbers [tex]\mathbb W[/tex], integers [tex]\mathbb Z[/tex], the rational numbers [tex]\mathbb Q[/tex] and the real numbers [tex]\mathbb R[/tex].

3.  The given number is [tex]0.\bar 6[/tex].

We can rewrite this as [tex]0.\bar6=\frac{2}{3}[/tex].

Hence  [tex]0.\bar 6[/tex] is a subset of the rational numbers [tex]\mathbb Q[/tex], and the real numbers [tex]\mathbb R[/tex]

4.  The given number is [tex]\pi[/tex].

In decimals: [tex]\pi\approx 3.141592663589....[/tex].

This number does not terminate and /or recur.

It belongs to the set of irrational numbers, [tex]\mathbb P[/tex]

5.  The given number [tex]-\frac{36}{4}=-9[/tex] is a subset of the integers [tex]\mathbb Z[/tex], the rational numbers [tex]\mathbb Q[/tex] and the real numbers [tex]\mathbb R[/tex].

6. The given number [tex]1.125=\frac{9}{8}[/tex] is a subset of the rational numbers [tex]\mathbb Q[/tex] and the real numbers [tex]\mathbb R[/tex].

7.  See attachment

8. A number [tex]-\frac{1}{3}[/tex]and its additive inverse [tex]\frac{1}{3}[/tex], summing up to zero.

[tex]-\frac{1}{3}+\frac{1}{3}=0[/tex]......The inverse property of addition.

9. The commutative property of multiplication says that; the order in which we multiply two real numbers does not matter.

[tex](9\cdot -4)\cdot 7=7\cdot (9\cdot -4)[/tex].......commutative property of multiplication.

10. Let [tex]a,b,c \in \mathbb R[/tex], then the distributive property of multiplication over subtraction says that:

[tex]a(b-c)=a\cdot b- a\cdot c[/tex]

[tex]6(2x-1)=6\cdot 2x-6\cdot 1[/tex]

11. Let [tex]a\in \mathbb R[/tex], then the identity property of multiplicatio says that, any real number multiplied by itself is the same number.

[tex]a\cdot 1=1\cdot a=a[/tex]

[tex]5x^2\cdot 1=5x^2[/tex]

Ver imagen kudzordzifrancis