Respuesta :

Answer:

The perimeter is equal to [tex]P=(11+2\sqrt{5}+\sqrt{17})\ units[/tex]  or [tex]P=19.59\ units[/tex]

Step-by-step explanation:

we have

The coordinates of the vertices are

R(-1,3), S(3,3), T(5,-1), and U(-2,-1)

plot the figure to better understand the problem

see the attached figure

we know that

The perimeter of a quadrilateral is the sum of its four length sides

so

[tex]P=RS+ST+TU+UR[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

step 1

Find the distance RS

[tex]R(-1,3)\\S(3,3)[/tex]  

substitute the values

[tex]d=\sqrt{(3-3)^{2}+(3+1)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(4)^{2}}[/tex]

[tex]RS=4\ units[/tex]

step 2

Find the distance ST  

[tex]S(3,3)\\T(5,-1)[/tex]  

substitute the values

[tex]d=\sqrt{(-1-3)^{2}+(5-3)^{2}}[/tex]

[tex]d=\sqrt{(-4)^{2}+(2)^{2}}[/tex]

[tex]ST=2\sqrt{5}\ units[/tex]

step 3

Find the distance TU

[tex]T(5,-1)\\U(-2,-1)[/tex]  

substitute the values

[tex]d=\sqrt{(-1+1)^{2}+(-2-5)^{2}}[/tex]

[tex]d=\sqrt{(0)^{2}+(-7)^{2}}[/tex]

[tex]TU=7\ units[/tex]

step 4

Find the distance UR  

[tex]U(-2,-1)\\R(-1,3)[/tex]  

substitute the values

[tex]d=\sqrt{(3+1)^{2}+(-1+2)^{2}}[/tex]

[tex]d=\sqrt{(4)^{2}+(1)^{2}}[/tex]

[tex]UR=\sqrt{17}\ units[/tex]

step 5

Find the perimeter

[tex]P=RS+ST+TU+UR[/tex]

substitute the values

[tex]P=4+2\sqrt{5}+7+\sqrt{17}[/tex]

[tex]P=(11+2\sqrt{5}+\sqrt{17})\ units[/tex] -----> exact value

[tex]P=(11+4.47+4.12)=19.59\ units[/tex] -----> approximate value

Ver imagen calculista