Antibiotic-resistant bacteria have an enzyme, penicillinase, that catalyzes the decomposition of the antibiotic. The molecular mass of penicillinase is 31200 g/mol. The turnover number of the enzyme at 28 °C is 2.00 × 103 s–1. If 4.10 μg of penicillinase catalyzes the destruction of 2.83 mg of amoxicillin, an antibiotic with a molecular mass of 364 g/mol, in 29.6 seconds at 28 °C, how many active sites does the enzyme have? Assume that the enzyme is fully saturated under the conditions described above.

Respuesta :

Answer:

The number of  active sites enzyme have is 1.

Explanation:

Mass of penicillinase = 4.10 μg =[tex]4.10\times 10^{-6} g[/tex]

1 g = 1000000 μg

The turnover number of the enzyme at 28 °C = [tex]2.00\times 10^3 s^{-1}[/tex]

Moles of penicillinase =

[tex]\frac{4.10\times 10^{-6} g}{31200 g/mol}=1.31410\times 10^{-10} mol[/tex]

Mass of antiboitic-amoxicillin =2.83 mg =[tex]2.83\times 10^{-3} g[/tex]

Moles of amoxicillin =

[tex]\frac{2.83\times 10^{-3} g}{364 g/mol}=7.7747\times 10^{-6} mol[/tex]

Moles of reactant which are converted into product per second:

[tex]1.31410\times 10^{-10} mol\times 2.00\times 10^3 s^{-1}[/tex]

=[tex]2.6282\times 10^{-7} mol/s[/tex]

Moles of product converted in 29.6 seconds:

[tex]2.6282\times 10^{-7} mol/s\times 29.6 s=7.779472\times 10^{-6} mol[/tex]

Number of sites:

[tex]=\frac{\text{moles of product}}{\text{moles of reactant}}[/tex]

[tex]=\frac{7.779472\times 10^{-6} mol}{7.7747\times 10^{-6} mol}=1.00[/tex]