Answer:
3.6667
Explanation:
For helium gas:
Using Boyle's law
[tex] {P_1}\times {V_1}={P_2}\times {V_2}[/tex]
Given ,
V₁ = 3.0 L
V₂ = 9.0 L
P₁ = 5.6 atm
P₂ = ?
Using above equation as:
[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]
[tex]{5.6}\times {3.0}={P_2}\times {9.0} atm[/tex]
[tex]{P_2}=\frac {{5.6}\times {3.0}}{9.0} atm[/tex]
[tex]{P_1}=1.8667\ atm[/tex]
The pressure exerted by the helium gas in 9.0 L flask is 1.8667 atm
For Neon gas:
Using Boyle's law
[tex] {P_1}\times {V_1}={P_2}\times {V_2}[/tex]
Given ,
V₁ = 4.5 L
V₂ = 9.0 L
P₁ = 3.6 atm
P₂ = ?
Using above equation as:
[tex]{P_1}\times {V_1}={P_2}\times {V_2}[/tex]
[tex]{3.6}\times {4.5}={P_2}\times {9.0} atm[/tex]
[tex]{P_2}=\frac {{3.6}\times {4.5}}{9.0} atm[/tex]
[tex]{P_1}=1.8\ atm[/tex]
The pressure exerted by the neon gas in 9.0 L flask is 1.8 atm
Thus total pressure = 1.8667 + 1.8 atm = 3.6667 atm.