Answer:
The required range is 237.5 to 275.
Step-by-step explanation:
Consider the provided information.
The average cholesterol of the target population is 200 mg and they have a standard deviation of 25 mg.
The the value of μ = 200 and the [tex]\sigma=25[/tex]
The company wished to test a sample of people who fall between 1.5 and 3 z-scores above the mean.
Let the value of z is 1.5.
Now use the z score formula: [tex]z=\frac{(x -\mu)}{\sigma}[/tex]
Substitute the respective values in the above formula.
[tex]1.5=\frac{(x -200)}{25}[/tex]
[tex]37.5=x -200[/tex]
[tex]237.5=x[/tex]
Now let the value of z is 3.
Substitute the respective values in the z score formula.
[tex]3=\frac{(x -200)}{25}[/tex]
[tex]75=x -200[/tex]
[tex]275=x[/tex]
Hence, the required range is 237.5 to 275.