Answer:
(12,0)
Step-by-step explanation:
Let us find the equation of the line with the help of two point form of a line
Here take any two coordinates
say (22,36) and (27,54)
The two point form says
[tex]\frac{y-y_{1}}{x-x_{1}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}[/tex]
Putting the values in above formula
[tex]\frac{y-36}{x-22}=\frac{54-36}{27-22}[/tex]
[tex]\frac{y-36}{x-22}=\frac{18}{5}[/tex]
[tex]y-36=\frac{18}{5} \times (x-22)[/tex]
[tex]y=\frac{18}{5} \times (x-22) + 36[/tex]
In order to determine the x intercept we put y = 0 and solve it for x
[tex]0-36=\frac{18}{5} \times (x-22)[/tex]
[tex]-36 \times \frac{5}{18}=(x-22)[/tex]
[tex]-10=x-22[/tex]
adding 22 on both sides we get
x=12
Hence the x intercept is 12