The function f(x) = -5x2 + 3 is
defined over the domain
-4 < x < -1. Find the range of
this function.
.
A. -77 < f(x) < -2
B. 8 < f(x) < 83
C. 8 < f(x) < 23
D. 8 < f(x) < 83
.
.

Respuesta :

Answer:

A. -77 < f(x) < -2

Step-by-step explanation:

- 4 < x < -1 so : (-1)² < x² < (-4)² because  f is decrasing if - 4 < x < -1

1< x² < 16.....now multiply by : -5

-80 < - 5x² < -5   add 3  you have : -77< - 5x²+3 < -2

-77 < f(x) < -2

The range of function is -77 < f(x) < -2.

Domain and range of a function

The domain and range of a function are the components of a function. The domain is the set of all the input values of a function and range is the possible output given by the function.

Given function

f(x) = [tex]-5x^{2} +3[/tex]

Domain -4 < x < -1

If in the domain , x ⇒ small, f(x) ⇒ small

Maximum x =-1, f(x) =  [tex]-5x^{2} +3[/tex]

f(x) = [tex]-5(-1)^{2} +3=-2[/tex]

Minimum x = -4

f(x) =  [tex]-5(-4)^{2} +3=-77[/tex]

-77 < f(x) < -2

The range of function is -77 < f(x) < -2.

Find out more information about domain and range of a function here

brainly.com/question/20207421

#SPJ2