. In your lab you are studying aspirin, and its acid/base properties. You find that a 1.00 L of a 0.500 M solution of aspirin has a pH of 1.86. You are interested in learning about the % dissociation in a buffered solution of aspirin, so you make a new 1.00 L solution containing 0.500 moles of aspirin and 0.25 moles of the sodium salt of aspirin. What will the % dissociation be in this new buffered solution?

Respuesta :

Explanation:

The given data is as follows.

Initial volume of aspirin = 1.00 L

Initial concentration of aspirin = 0.500 M

Initial pH = 1.86

Hence, hydronium ion concentration will be calculated as follows.

               pH = [tex]-log[H^{+}][/tex]

or,              [tex][H^{+}] = 10^{-pH}[/tex]

                               = [tex]10^{-1.86}[/tex]

                                = [tex]13.8 \times 10^{-3} M[/tex]

As, buffer containing aspirin and its conjugate base is formed in 1 L solution.

Hence, moles of aspirin are 0.500 moles and moles of the conjugate base are 0.25 moles.

So, upon dissociation the concentration of acetylsalicylate ion and hydronium ion are the same.

Hence, [tex]pK_{a}[/tex] value will be calculated as follows.

             [tex]K_{a}[/tex] = [tex]\frac{[H^{+}]^{2}}{[Aspirin]}[/tex]

                           = [tex]\frac{[13.8 \times 10^{-3}]^{2}}{0.50}[/tex]

                           = [tex]3.8 \times 10^{-4}[/tex]

Also,       [tex]pK_{a} = -log [K_{a}][/tex]

                          = [tex]-log [3.8 \times 10^{-4}][/tex]

                           = 3.41

Now, using Henderson-Hasselbalch equation we determine the pH as follows.

      pH = [tex]pK_{a} + log \frac{[CH_{3}COO^{-}]}{[Aspirin]}[/tex]

            = 3.41 + [tex]log \frac{[0.25]}{[0.5]}[/tex]

            = 3.11

Determine the hydronium ion concentration of buffer as follows.

          [tex][H^{+}] = 10^{-pH}[/tex]

                            = [tex]10^{-3.11}[/tex]

                            = [tex]7.76 \times 10^{-4}[/tex] M

Therefore, we calculate the recent dissociation as follows.

          % dissociation = [tex]\frac{\text{Amount dissociated}}{\text{Initial concentration}} \times 100%[/tex]

                                   = [tex]\frac{0.000776}{0.50 M} \times 100%[/tex]

                                   = [tex]1.5 \times 10^{-3}[/tex] × 100

                                   = 0.15%

Thus, we can conclude that the value of % dissociation of new buffered solution is 0.15%.