Respuesta :

Answer:

1) Even for first problem.

2) Neither for the second.

I really think the problem I labeled 1 is the correct interpretation but just in case you meant the latter I wrote the latter as well. The sentence translates to exactly what I have for problem number 1.

The Problem:

1) Determine if [tex]f(x)=x+\frac{4}{x}[/tex] is even, odd, or neither.

2) Determine if [tex]f(x)=\frac{x+4}{x}[/tex] is even, odd, or neither.

Step-by-step explanation:

[tex]f(-x)=f(x)[/tex] implies [tex]f[/tex] is even.

[tex]f(-x)=-f(x)[/tex] implies [tex]f[/tex] is odd.

So either definition says we have to plug in [tex]-x[/tex].

1)

[tex]f(x)=x+\frac{4}{x}[/tex] with new input [tex]-x[/tex]:

[tex]f(-x)=-x+\frac{4}{-x}[/tex]

[tex]f(-x)=-x+-\frac{4}{x}[/tex]

[tex]f(-x)=-(x+\frac{4}{x})[/tex]

[tex]f(-x)=-f(x)[/tex]

This means [tex]f[/tex] is even since we got the same thing we started with.

2)

[tex]f(x)=\frac{x+4}{x}[/tex] with new input [tex]-x[/tex]:

[tex]f(-x)=\frac{-x+4}{-x}[/tex]

[tex]f(-x)=\frac{-(x-4)}{-x}[/tex]

[tex]f(-x)=\frac{x-4}{x}[/tex]

This is neither the same or the opposite of what we started with.