Respuesta :

Answer:

B (-9,−57/8)

Step-by-step explanation:

we know that

If a ordered pair is a solution of the linear equation, then the ordered pair must satisfy the linear equation

we have

[tex]6x-8y=3[/tex]

Verify each case

Substitute the value of x and the value of y in the linear equation and then compare the results

case A) (6,17/2)

For x=6, y=17/2

Substitute

[tex]6(6)-8(17/2)=3[/tex]

[tex]-32=3[/tex] -----> is not true

therefore

The ordered pair not satisfy the equation

case B) (-9,-57/8)

For x=-9, y=-57/8

Substitute

[tex]6(-9)-8(-57/8)=3[/tex]

[tex]3=3[/tex] -----> is true

therefore

The ordered pair satisfy the equation

case C) (6,-39/8)

For x=6, y=-39/8

Substitute

[tex]6(6)-8(-39/8)=3[/tex]

[tex]75=3[/tex] -----> is not true

therefore

The ordered pair not satisfy the equation

case D) (6,-8)

For x=6, y=-8

Substitute

[tex]6(6)-8(-8)=3[/tex]

[tex]100=3[/tex] -----> is not true

therefore

The ordered pair not satisfy the equation