Answer:
B (-9,−57/8)
Step-by-step explanation:
we know that
If a ordered pair is a solution of the linear equation, then the ordered pair must satisfy the linear equation
we have
[tex]6x-8y=3[/tex]
Verify each case
Substitute the value of x and the value of y in the linear equation and then compare the results
case A) (6,17/2)
For x=6, y=17/2
Substitute
[tex]6(6)-8(17/2)=3[/tex]
[tex]-32=3[/tex] -----> is not true
therefore
The ordered pair not satisfy the equation
case B) (-9,-57/8)
For x=-9, y=-57/8
Substitute
[tex]6(-9)-8(-57/8)=3[/tex]
[tex]3=3[/tex] -----> is true
therefore
The ordered pair satisfy the equation
case C) (6,-39/8)
For x=6, y=-39/8
Substitute
[tex]6(6)-8(-39/8)=3[/tex]
[tex]75=3[/tex] -----> is not true
therefore
The ordered pair not satisfy the equation
case D) (6,-8)
For x=6, y=-8
Substitute
[tex]6(6)-8(-8)=3[/tex]
[tex]100=3[/tex] -----> is not true
therefore
The ordered pair not satisfy the equation