At some instant and location, the electric field associated with an electromagnetic wave in vacuum has the strength 70.5 V/m. Find the magnetic field strength, the energy density, and the power flow per unit area, all at the same instant and location.

Respuesta :

Answer:

The magnetic field strength, the energy density, and the power flow per unit area are [tex]2.35\times10^{-7}\ T[/tex], [tex]4.396\times10^{-8}\ J/m^3[/tex] and 13.18 W/m².

Explanation:

Given that,

Electromagnetic wave strength E= 70.5 V/m

(I). We need to calculate the magnetic field strength

Using formula of Electromagnetic wave strength

[tex]c= \dfrca{E}{B}[/tex]

[tex]B=\dfrac{E}{c}[/tex]

[tex]B=\dfrac{70.5 }{3\times10^{8}}[/tex]

[tex]B=2.35\times10^{-7}\ T[/tex]

(II). We need to calculate the energy density

Using formula of energy density

[tex]\mu_{total}=\mu_{E}+\mu_{B}[/tex]

[tex]\mu_{total}=\dfrac{1}{2}\epsilon_{0}E^2+\dfrac{1}{2}\dfrac{B^2}{\mu_{0}}[/tex]

[tex]\mu_{total}=\dfrac{1}{2}\times8.85\times10^{-12}\times(70.5)^2+\dfrac{1}{2}\times\dfrac{(2.35\times10^{-7})^2}{4\pi\times10^{-7}}[/tex]

[tex]\mu_{total}=4.396\times10^{-8}\ J/m^3[/tex]

(III). We need to calculate the power flow per unit area

Using formula of poynting vector

[tex]S=\dfrac{1}{\mu_{0}}EB[/tex]

Put the value into the formula

[tex]S=\dfrac{1}{4\pi\times10^{-7}}\times70.5\times2.35\times10^{-7}[/tex]

[tex]S=13.18\ W/m^2[/tex]

Hence, The magnetic field strength, the energy density, and the power flow per unit area are [tex]2.35\times10^{-7}\ T[/tex], [tex]4.396\times10^{-8}\ J/m^3[/tex] and 13.18 W/m².