Answer:
1.3333...
Step-by-step explanation:
We need to know that
[tex]\lambda = \frac{N_{t+1}}{N_t}[/tex]
Where [tex]N_t = Population \ at \ the \ initial \ year\\N_{t+1} = Population \ one \ year \ after[/tex]
Using the data of the problem
[tex]\lambda = \frac{100}{75} = 1.333...[/tex]
so lambda is 1.333...