A gamma-ray photon produces an electron and a positron, each with a kinetic energy of 261 keV . h=6.626×10−34J⋅s, c=2.998×108m/s, me=9.109×10−31kg, e=1.602×10−19C.
A) Determine the energy of the photon.B) Determine the wavelength of the photon.

Respuesta :

Answer:

The energy and the wavelength of the photon are 1.546 MeV and [tex]8.036\times10^{-13}\ m[/tex].

Explanation:

Given that,

Kinetic energy = 261 KeV

Planck's constant [tex]h = 6.626\times10^{−34}\ J.s[/tex]

Speed of light [tex]c=2.998\times10^{8}\ m/s[/tex]

Mass of electron [tex]m_{e}=9.109\times10^{-31}\ kg[/tex]

Charge [tex]q=1.602\times10^{-19}\ C[/tex]

(A). We need to calculate the energy of the photon

Using formula of rest mass energy

[tex]E=m_{0}c^2[/tex]

[tex]E=9.109\times10^{-31}\times(3\times10^{8})^2[/tex]

[tex]E=8.198\times10^{-14}\ J[/tex]

Energy in eV

[tex]E=\dfrac{8.198\times10^{-14}}{1.6\times10^{-19}}[/tex]

[tex]E=512375\ eV[/tex]

[tex]E=0.512\ MeV[/tex]

The total energy of photon

[tex]TE=2(E+K.E)[/tex]

[tex]TE=2(0.512+0.261)[/tex]

[tex]TE=1.546\ MeV[/tex]

(B). We need to calculate the wavelength of the photon

Using formula of wavelength

[tex]\lambda=\dfrac{hc}{E}[/tex]

Put the value into the formula

[tex]\lambda=\dfrac{6.626\times10^{−34}\times3\times10^{8}}{1.546\times10^{6}\times1.6\times10^{-19}}[/tex]

[tex]\lambda=8.036\times10^{-13}\ m[/tex]

Hence, The energy and the wavelength of the photon are 1.546 MeV and [tex]8.036\times10^{-13}\ m[/tex].