Write as an equation:

1. the sum of 2 numbers is 164. the larger exceeds 3 times the smaller by 36.

2. the sum of 2 numbers is 120. 4 times the larger divided by twice the smaller number is 34.

Respuesta :

Answer: 1) 132 and 32

               [tex]\bold{2) \dfrac{340}{3} and \dfrac{20}{3}}[/tex]

Step-by-step explanation:

Let x represent the larger number and y represent the smaller number.

*******************************************************************************************

1)

           x + y = 164     and     x = 3y + 36

(3y + 36) + y = 164

       36 + 4y = 164

               4y = 128

                 y =  32     and      x = 3(32) + 36

                                              x =   96   + 36

                                              x =       132

*******************************************************************************************

2)

          x + y = 120     and      [tex]\dfrac{4x}{2y}=34[/tex]  ⇒   4x = 68y  ⇒   x = 17y

     (17y) + y = 120

             18y = 120

                [tex]y=\dfrac{120}{18}[/tex]

                [tex]y=\dfrac{20}{3}[/tex]    and    [tex]x=17 \bigg( \dfrac{20}{3} \bigg)[/tex]

                                            [tex]x= \dfrac{340}{3}[/tex]

Answer:

1. [tex]x= 3(164-x)+36[/tex]

2.[tex]\frac{4(120-b)}{2b}=34[/tex]

Step-by-step explanation:

The sum means two number are adding up.

Exceeds means subtraction.

1.Let the number larger number of x and other number y

x + y =164.. (1)

x - 3y = 36...(2)

x= 3y + 36

Putting value of x from (2) into (1).

So ,according to question we got equation:

x=3(164-x)+36

2. Let the number larger number of a and other number b

a + b = 120 ..(1)

[tex]\frac{4a}{2b}=34[/tex]..(2)

Putting value of a from (1) into (2)

So ,according to question we got equation:

[tex]\frac{4(120-b)}{2b}=34[/tex]