Respuesta :
Answer: 1) 132 and 32
[tex]\bold{2) \dfrac{340}{3} and \dfrac{20}{3}}[/tex]
Step-by-step explanation:
Let x represent the larger number and y represent the smaller number.
*******************************************************************************************
1)
x + y = 164 and x = 3y + 36
(3y + 36) + y = 164
36 + 4y = 164
4y = 128
y = 32 and x = 3(32) + 36
x = 96 + 36
x = 132
*******************************************************************************************
2)
x + y = 120 and [tex]\dfrac{4x}{2y}=34[/tex] ⇒ 4x = 68y ⇒ x = 17y
(17y) + y = 120
18y = 120
[tex]y=\dfrac{120}{18}[/tex]
[tex]y=\dfrac{20}{3}[/tex] and [tex]x=17 \bigg( \dfrac{20}{3} \bigg)[/tex]
[tex]x= \dfrac{340}{3}[/tex]
Answer:
1. [tex]x= 3(164-x)+36[/tex]
2.[tex]\frac{4(120-b)}{2b}=34[/tex]
Step-by-step explanation:
The sum means two number are adding up.
Exceeds means subtraction.
1.Let the number larger number of x and other number y
x + y =164.. (1)
x - 3y = 36...(2)
x= 3y + 36
Putting value of x from (2) into (1).
So ,according to question we got equation:
x=3(164-x)+36
2. Let the number larger number of a and other number b
a + b = 120 ..(1)
[tex]\frac{4a}{2b}=34[/tex]..(2)
Putting value of a from (1) into (2)
So ,according to question we got equation:
[tex]\frac{4(120-b)}{2b}=34[/tex]