You deposit $175 in an account that pays 4% interest compounded quarterly. How much will you have in the account after 2 years?
A. $182.11
B. $189.50
C. $204.73
D. $239.50

Respuesta :

[tex]\bf ~~~~~~ \textit{Compound Interest Earned Amount} \\\\ A=P\left(1+\frac{r}{n}\right)^{nt} \quad \begin{cases} A=\textit{accumulated amount}\\ P=\textit{original amount deposited}\dotfill &\$175\\ r=rate\to 4\%\to \frac{4}{100}\dotfill &0.04\\ n= \begin{array}{llll} \textit{times it compounds per year}\\ \textit{quarterly, thus four times} \end{array}\dotfill &4\\ t=years\dotfill &2 \end{cases}[/tex]

[tex]\bf A=175\left(1+\frac{0.04}{4}\right)^{4\cdot 2}\implies A=175(1.01)^8\implies A\approx 189.50[/tex]

The answer would be d 239.50