Respuesta :

Answer:

13

Step-by-step explanation:

[tex]\sqrt{|1-(-4)|^{2}+|2-(-10)|^{2}[/tex]

=[tex]\sqrt{5^{2}+12^{2} }[/tex]

=13

This question is essentially asking to find the distance between these two points:

The formula for distance between two points is:

[tex]\sqrt{(x_{2} -x_{1})^{2} + (y_{2} -y_{1})^{2}}[/tex]

In this case:

[tex]x_{2} =-4\\x_{1} =1\\y_{2} =-10\\y_{1} =2[/tex]

^^^Plug these numbers into the formula for distance like so...

[tex]\sqrt{(-4-1)^{2} + (-10-2)^{2}}[/tex]

To solve this you must use the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction)

First we have parentheses. Remember that when solving you must go from left to right

[tex]\sqrt{(-4-1)^{2} + (-10-2)^{2}}[/tex]

-4 - 1   = -5

[tex]\sqrt{(-5)^{2} + (-10-2)^{2}}[/tex]

-10 - 2 = -12

[tex]\sqrt{(-5)^{2} + (-12)^{2}}[/tex]

Next solve the exponent. Again, you must do this from left to right

[tex]\sqrt{(-5)^{2} + (-12)^{2}}[/tex]

(-5)² = 25

[tex]\sqrt{25 + (-12)^{2}}[/tex]

(-12)² = 144

[tex]\sqrt{(25 + 144)}[/tex]

Now for the addition

[tex]\sqrt{(25+144)}[/tex]

25 + 144 = 169

Now take the square root

[tex]\sqrt{169}[/tex] = 13

This segment is 13 units long

Hope this helped!

~Just a girl in love with Shawn Mendes