Respuesta :
Answer:
13
Step-by-step explanation:
[tex]\sqrt{|1-(-4)|^{2}+|2-(-10)|^{2}[/tex]
=[tex]\sqrt{5^{2}+12^{2} }[/tex]
=13
This question is essentially asking to find the distance between these two points:
The formula for distance between two points is:
[tex]\sqrt{(x_{2} -x_{1})^{2} + (y_{2} -y_{1})^{2}}[/tex]
In this case:
[tex]x_{2} =-4\\x_{1} =1\\y_{2} =-10\\y_{1} =2[/tex]
^^^Plug these numbers into the formula for distance like so...
[tex]\sqrt{(-4-1)^{2} + (-10-2)^{2}}[/tex]
To solve this you must use the rules of PEMDAS (Parentheses, Exponent, Multiplication, Division, Addition, Subtraction)
First we have parentheses. Remember that when solving you must go from left to right
[tex]\sqrt{(-4-1)^{2} + (-10-2)^{2}}[/tex]
-4 - 1 = -5
[tex]\sqrt{(-5)^{2} + (-10-2)^{2}}[/tex]
-10 - 2 = -12
[tex]\sqrt{(-5)^{2} + (-12)^{2}}[/tex]
Next solve the exponent. Again, you must do this from left to right
[tex]\sqrt{(-5)^{2} + (-12)^{2}}[/tex]
(-5)² = 25
[tex]\sqrt{25 + (-12)^{2}}[/tex]
(-12)² = 144
[tex]\sqrt{(25 + 144)}[/tex]
Now for the addition
[tex]\sqrt{(25+144)}[/tex]
25 + 144 = 169
Now take the square root
[tex]\sqrt{169}[/tex] = 13
This segment is 13 units long
Hope this helped!
~Just a girl in love with Shawn Mendes