Respuesta :

Answer:

see explanation

Step-by-step explanation:

Using the exact trigonometric values

cos30° = [tex]\frac{\sqrt{3} }{2}[/tex], sin30° = [tex]\frac{1}{2}[/tex] and tan45° = 1

Let the point where the segment from C meets AB be D, then

Using ΔBCD

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{BD}{x}[/tex] and

[tex]\frac{BD}{x}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

2BD = [tex]\sqrt{3}[/tex] x ( divide both sides by 2 )

BD = [tex]\frac{\sqrt{3} }{2}[/tex] x ←

sin30° = [tex]\frac{opposite}{hypotenuse}[/tex] = [tex]\frac{CD}{x}[/tex] and

[tex]\frac{CD}{x}[/tex] = [tex]\frac{1}{2}[/tex] ( cross- multiply )

2CD = x ( divide both sides by 2 )

CD = [tex]\frac{1}{2}[/tex] x

Using ΔACD

tan45° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{CD}{AD}[/tex] = [tex]\frac{\frac{x}{2} }{AD}[/tex] = 1 , hence

AD = [tex]\frac{1}{2}[/tex] x ←

Hence

AB = BD + AD = [tex]\frac{\sqrt{3} }{2}[/tex] x + [tex]\frac{1}{2}[/tex] x = ([tex]\frac{\sqrt{3}+1 }{2}[/tex] ) x