Respuesta :
Answer:
x = 3 and y = -1
Step-by-step explanation:
It is given that,
3x + 2y = 7 ----(1)
2x - 5y = 11 ---(2)
To find the solution of given equations
eq(1) * 2 ⇒
6x + 4y = 14 ----(3)
eq(2) * 3 ⇒
6x - 15y = 33 ----(4)
eq(3) - eq(4) ⇒
6x + 4y = 14 ----(3)
6x - 15y = 33 ----(4)
19y = 19
y = -1
Substitute the value of y in eq (1) we get,
3x + 2y = 7 ----(1)
3x + (2 *-1) = 7
3x = 7 + 2 = 9
x = 9/3 = 3
Therefore x = 3 and y = -1
Answer:
[tex]x=3,\ \ y=-1[/tex]
Step-by-step explanation:
We have the following two equations:
[tex]3x+2y=7[/tex]
[tex]2x-5y=11[/tex]
To solve the system by the elimination method multiply the first equation by [tex]\frac{5}{2}[/tex] and add it to the second equation
By multiplying the first equation by [tex]\frac{5}{2}[/tex] you get the following:
[tex]\frac{15}{2}x+5y=\frac{35}{2}[/tex]
Now we add the two equations
[tex]\frac{15}{2}x+5y=\frac{35}{2}[/tex]
[tex]2x-5y=11[/tex]
---------------------------------------------------------
[tex]\frac{19}{2}x=\frac{57}{2}\\\\19x=57\\\\x=\frac{57}{19}\\\\x=3[/tex]
Now substitute the value of x in either equation and solve for y
[tex]2(3)-5y=11[/tex]
[tex]6-5y=11[/tex]
[tex]-5y=11-6[/tex]
[tex]-5y=5[/tex]
[tex]y=-1[/tex]