so the rainwater flows as R(x), and the decrease of the flow will be D(x), the new smaller pipe after the decrease will have water flowing at R(x) - D(x)
[tex]\bf \begin{cases} R(x)=-0.1x^3+1.4x^2-1.5x\\ D(x)=-0.04x^3+0.5x^2+x \end{cases} \\\\[-0.35em] ~\dotfill\\\\ \stackrel{R(x)}{(-0.1x^3+1.4x^2-1.5x)}-\stackrel{D(x)}{(-0.04x^3+0.5x^2+x)} \\\\\\ (-0.1x^3+1.4x^2-1.5x)+0.04x^3-0.5x^2-x \\\\\\ -0.1x^3+1.4x^2-1.5x+0.04x^3-0.5x^2-x \\\\\\ -0.10x^3+0.04x^3+1.4x^2-0.5x^2-1.5x-x\implies \stackrel{H(x)}{-0.6x^3+0.9x^2-1.6x}[/tex]