Respuesta :
Answer:P(x) = -3000[tex]\times[/tex](x) + 57000
Explanation:
Let the demand function be given by p(x)
Let P(x) be the demand for the match at price x
P(x) = a[tex]\times[/tex](x) + b
27000 = a[tex]\times[/tex](10) + b
33000 = a[tex]\times[/tex](8) + b
Solving we get a = -3000 and b = 57000
Thus P(x) = -3000[tex]\times[/tex](x) + 57000
Answer: The demand function is:
[tex]P = 19 - \frac{1}{3000} Q[/tex]
Explanation:
The linear demand function is as follows:
P = a - bQ ⇒ (1)
Where,
p - price
Q - Quantity
a - intercept value
b - slope coefficient
From the given data, we have the following two equations:
10 = a - b(27,000) ⇒ (2)
8 = a - b(33,000) ⇒ (3)
By solving the equations (2) and (3), we get
a = 19 and b = [tex]\frac{1}{3000}[/tex]
So, the demand function is as follows:
putting the values of 'a' and 'b' in equation (1), we get
[tex]P = 19 - \frac{1}{3000} Q[/tex]