Respuesta :
Answer:
f(-5) = 1/ 243
Step-by-step explanation:
f(x) = 3^x
Let x=-5
f(-5) = 3^-5
Since the exponent is negative, it will move to the denominator
f(-5) = 1/3^5
f(-5) = 1/ 243
For this case we have the following function:
[tex]f (x) = 3 ^ x[/tex]
We must evaluate the function for[tex]x = -5[/tex]
So, we have:
[tex]f (-5) = 3 ^ {-5}[/tex]
By definition of power properties it is fulfilled that:
[tex]a ^ {- 1} = \frac {1} {a ^ 1} = \frac {1} {a}[/tex]
Thus:
[tex]f (-5) = \frac {1} {3 ^ 5} = \frac {1} {3 * 3 * 3 * 3 * 3} = \frac {1} {243}[/tex]
Answer:
[tex]\frac {1} {243}[/tex]