Parameterize [tex]S[/tex] by
[tex]\vec s(u,v)=5\cos u\sin v\,\vec\imath+5\sin u\sin v\,\vec\jmath+5\cos v\,\vec k[/tex]
with [tex]0\le u\le\dfrac\pi2[/tex] and [tex]0\le v\le\dfrac\pi2[/tex].
Take the normal vector to [tex]S[/tex] to be
[tex]\vec s_u\times\vec s_v=-25\cos u\sin^2v\,\vec\imath-25\sin u\sin^2v\,\vec\jmath-25\cos v\sin v\,\vec k[/tex]
Then the integral of [tex]\vec F[/tex] across [tex]S[/tex] is
[tex]\displaystyle\iint_S\vec F\cdot\mathrm d\vec S=\int_0^{\pi/2}\int_0^{\pi/2}\vec F(x(u,v),y(u,v),z(u,v))\cdot(\vec s_u\times\vec s_v)\,\mathrm du\,\mathrm dv[/tex]
[tex]\displaystyle=-125\int_0^{\pi/2}\int_0^{\pi/2}(\cos u\sin v\,\vec\imath-\cos v\,\vec\jmath+\sin u\sin v\,\vec k)\cdot(\cos u\sin^2v\,\vec\imath+\sin u\sin^2v\,\vec\jmath+\cos v\sin v\,\vec k)\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle-125\int_0^{\pi/2}\int_0^{\pi/2}\cos^2u\sin^3v\,\mathrm du\,\mathrm dv[/tex]
[tex]=\displaystyle-125\left(\int_0^{\pi/2}\cos^2u\,\mathrm du\right)\left(\int_0^{\pi/2}\sin^3v\,\mathrm dv\right)=\boxed{-\frac{125\pi}6}[/tex]