Respuesta :

Answer:

Rounding to nearest hundredths gives us r=0.06.

So r is about 6%.

Step-by-step explanation:

So we are given:

[tex]A=P(1+r)^t[/tex]

where

[tex]A=2300[/tex]

[tex]P=1600[/tex]

[tex]t=6[/tex].

[tex]A=P(1+r)^t[/tex]

[tex]2300=1600(1+r)^6[/tex]

Divide both sides by 1600:

[tex]\frac{2300}{1600}=(1+r)^6[/tex]

Simplify:

[tex]\frac{23}{16}=(1+r)^6[/tex]

Take the 6th root of both sides:

[tex]\sqrt[6]{\frac{23}{16}}=1+r[/tex]

Subtract 1 on both sides:

[tex]\sqrt[6]{\frac{23}{16}}-1=r[/tex]

So the exact solution is [tex]r=\sqrt[6]{\frac{23}{16}}-1[/tex]

Most likely we are asked to round to a certain place value.

I'm going to put my value for r into my calculator.

r=0.062350864

Rounding to nearest hundredths gives us r=0.06.