Answer:
Rounding to nearest hundredths gives us r=0.06.
So r is about 6%.
Step-by-step explanation:
So we are given:
[tex]A=P(1+r)^t[/tex]
where
[tex]A=2300[/tex]
[tex]P=1600[/tex]
[tex]t=6[/tex].
[tex]A=P(1+r)^t[/tex]
[tex]2300=1600(1+r)^6[/tex]
Divide both sides by 1600:
[tex]\frac{2300}{1600}=(1+r)^6[/tex]
Simplify:
[tex]\frac{23}{16}=(1+r)^6[/tex]
Take the 6th root of both sides:
[tex]\sqrt[6]{\frac{23}{16}}=1+r[/tex]
Subtract 1 on both sides:
[tex]\sqrt[6]{\frac{23}{16}}-1=r[/tex]
So the exact solution is [tex]r=\sqrt[6]{\frac{23}{16}}-1[/tex]
Most likely we are asked to round to a certain place value.
I'm going to put my value for r into my calculator.
r=0.062350864
Rounding to nearest hundredths gives us r=0.06.