When 1.50 ✕ 10^5 J of heat transfer occurs into a meat pie initially at 20.0°C, its entropy increases by 465 J/K. What is its final temperature (in degrees)?

Respuesta :

Answer:

The final temperature is 79.16°C.

Explanation:

Given that,

Heat [tex]Q=1.50\times10^{5}\ J[/tex]

Temperature = 20.0°C

Entropy = 465 J/k

We need to calculate the average temperature

Using relation between entropy and heat

[tex]\Delta S=\dfrac{\Delta Q}{T}[/tex]

[tex]T=\dfrac{\Delta Q}{\Delta S}[/tex]

Where, T = average temperature

[tex]\Delta Q[/tex]= transfer heat

[tex]\Delta S[/tex]= entropy

Put the value into the formula

[tex]T=\dfrac{1.50\times10^{5}}{465}[/tex]

[tex]T=322.58\ K[/tex]

We need to calculate the final temperature

Using formula of average temperature

[tex]T = \dfrac{T_{i}+T_{f}}{2}[/tex]

[tex]T_{f}=2T-T_{i}[/tex]....(I)

Put the value in the equation (I)

[tex]T_{f}=2\times322.58-293[/tex]

[tex]T_{f}=352.16\ K[/tex]

We convert the temperature K to degrees

[tex]T_{f}=352.16-273[/tex]

[tex]T_{f}=79.16^{\circ}\ C[/tex]

Hence, The final temperature is 79.16°C.