Answer:
The final temperature is 79.16°C.
Explanation:
Given that,
Heat [tex]Q=1.50\times10^{5}\ J[/tex]
Temperature = 20.0°C
Entropy = 465 J/k
We need to calculate the average temperature
Using relation between entropy and heat
[tex]\Delta S=\dfrac{\Delta Q}{T}[/tex]
[tex]T=\dfrac{\Delta Q}{\Delta S}[/tex]
Where, T = average temperature
[tex]\Delta Q[/tex]= transfer heat
[tex]\Delta S[/tex]= entropy
Put the value into the formula
[tex]T=\dfrac{1.50\times10^{5}}{465}[/tex]
[tex]T=322.58\ K[/tex]
We need to calculate the final temperature
Using formula of average temperature
[tex]T = \dfrac{T_{i}+T_{f}}{2}[/tex]
[tex]T_{f}=2T-T_{i}[/tex]....(I)
Put the value in the equation (I)
[tex]T_{f}=2\times322.58-293[/tex]
[tex]T_{f}=352.16\ K[/tex]
We convert the temperature K to degrees
[tex]T_{f}=352.16-273[/tex]
[tex]T_{f}=79.16^{\circ}\ C[/tex]
Hence, The final temperature is 79.16°C.