Answer:
[tex]log_28=3[/tex]
Explanation:
To calculate the value of [tex]log_28[/tex]
Also,Some relation for log values:
[tex]loga^m= mloga[/tex] -----------------------------------------------------1
[tex]log_aa= 1[/tex]---------------------------------------------------------------2
Also, [tex]2^3= 8[/tex]
Applying in the question as:
[tex]log_28=log_2(2^3)[/tex]
Using Relation-1 mentioned above:
[tex]log_28=3\times log_2(2)[/tex]
Using Relation-2 mentioned above:
[tex]log_28=3\times 1[/tex]
Thus,
[tex]log_28=3[/tex]