Respuesta :

Answer:

Velocity component in x-direction [tex]u=-\frac{3}{2}x^2-\frac{1}{3}x^3[/tex].

Explanation:

   v=3xy+[tex]x^{2}[/tex]y

We know that for incompressible flow

   [tex]\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}=0[/tex]

[tex]\frac{\partial v}{\partial y}=3x+x^{2}[/tex]

So   [tex]\frac{\partial u}{\partial x}+3x+x^{2}=0[/tex]

[tex]\frac{\partial u}{\partial x}= -3x-x^{2}[/tex]

By integrate with respect to x,we will find

[tex]u=-\frac{3}{2}x^2-\frac{1}{3}x^3[/tex]+C

So the velocity component in x-direction [tex]u=-\frac{3}{2}x^2-\frac{1}{3}x^3[/tex].