Answer:
Given:
laminar flow
and since velocity of flow is doubled, we consider [tex]v_{n}[/tex] as new velocity and [tex]v_{o}[/tex] as original velocity
Explanation:
As per laminar flow, thickness, t is given by
t = [tex]\frac{4.91x}{\sqrt( R_{ex}) }[/tex]
t = [tex]\frac{4.91x}{\sqrt{\frac{\rho vx}{\mu }}}[/tex]
t = [tex]\frac{4.91x\mu }{\sqrt{\rho vx}}[/tex]
where,
[tex]R_{ex}[/tex] = Reynold's no.
therefore,
t ∝ [tex]\frac{1}{\sqrt{v} }[/tex]
Now,
[tex]\frac{t_{n} }{t_{o} }[/tex] = [tex]\sqrt{(\frac{v_{o} }{v_{n} })}[/tex]
[tex]\frac{t_{n} }{t_{o} }[/tex] = [tex]\sqrt{(\frac{v_{o} }{2v_{o} } )} =\frac{1}{\sqrt{2} }[/tex]
therefore,
[tex]t_{n}:t_{o} = 1:\sqrt{2}[/tex]