Answer:
b. [tex]\Delta KE = 390 eV[/tex]
Explanation:
As we know that the electric field due to infinite line charge is given as
[tex]E =\frac{\lambda}{2\pi \epsilon_0 r}[/tex]
here we can find potential difference between two points using the relation
[tex]\Delta V = \int E.dr[/tex]
now we have
[tex]\Delta V = \int(\frac{\lambda}{2\pi \epsilon_0 r}).dr[/tex]
now we have
[tex]\Delta V = \frac{\lambda}{2\pi \epsilon_0}ln(\frac{r_2}{r_1})[/tex]
now plug in all values in it
[tex]\Delta V = \frac{12\times 10^{-9}}{2\pi \epsilon_0}ln(\frac{1+5}{1})[/tex]
[tex]\Delta V = 216ln6 = 387 V[/tex]
now we know by energy conservation
[tex]\Delta KE = q\Delta V[/tex]
[tex]\Delta KE = (e)(387V) = 387 eV[/tex]